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SUMMARY

In this paper, a high-order accurate compact finite difference method using the Hopf–Cole transformation
is introduced for solving one-dimensional Burgers’ equation numerically. The stability and convergence
analyses for the proposed method are given, and this method is shown to be unconditionally stable.
To demonstrate efficiency, numerical results obtained by the proposed scheme are compared with the
exact solutions and the results obtained by some other methods. The proposed method is second- and
fourth-order accurate in time and space, respectively. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the one-dimensional nonlinear Burgers’ equation

ut +uux =�uxx , a<x<b, 0<t�T (1)

with the initial condition

u(x,0)= f (x), a<x<b (2)

and boundary conditions

u(a, t)=u(b, t)=0, 0<t�T (3)
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where �>0 is the coefficient of kinematic viscosity, f is a prescribed function, and the subscripts
t and x denote differentiation with respect to variables t and x , respectively. Equation (1) was
first introduced by Bateman [1] and later treated by Burgers [2] after whom such an equation is
widely referred to as Burgers’ equation. This equation plays a major role in the study of nonlinear
waves since it is used as a mathematical model in turbulence problems, in the theory of shock
waves, and in continuous stochastic processes [3]. Many scientists are devoted to studying the
exact and numerical solution of the Burgers equation. The Burgers equation (1) is one of the very
few nonlinear partial differential equation that can be solved analytically for limited set of initial
condition functions only. Benton and Platzman [4] surveyed exact solutions of one-dimensional
Burgers’ equations and have given many different analytic solutions for the Burgers equation with
distinct initial conditions. In many cases these solutions involve infinite series, which may converge
very slowly for small values of �>0 (cf. [5]). Many researchers have used various numerical
techniques to solve the equation numerically such as the finite difference, the finite element, the
boundary element, and the spectral methods. See [6–15] and literatures are therein.

Kutluay et al. [6] introduced the explicit finite difference and exact explicit finite difference
methods to solve the linearized heat equation with Neumann boundary conditions obtained by
applying the Hopf–Cole transformation to the Burgers equation. Kadalbajoo and Awasthi [7] have
applied the Crank–Nicolson method to the linearized equation and shown that the method based on
the Crank–Nicolson method is unconditionally stable. The accuracy of this method is second-order
accurate both in space and time.

In this paper, we derive a high-order accurate compact finite difference method (FDM) to
numerically solve the linearized equation. The present method gives an implicit scheme with
tridiagonal symmetric positive-definite system, which can be easily implemented. Stability and
convergence analyses show that the present method is unconditionally stable and has an accuracy
of second- and fourth-order in time and space, respectively. Numerical experiments show that
the accuracy of the present method and the fourth-order iterative FDM provided in [8] is almost
the same. The numerical solutions obtained by the present method are in good agreement with the
exact solutions, and our method gives compatible numerical results with the ones obtained by
some other available methods given in references.

In Section 2 we consider a fourth-order accurate FDM using the Hopf–Cole transformation. The
stability and convergence analyses of the proposed scheme are given in Section 3, and the results
of numerical experiment are shown in Section 4.

2. FOURTH-ORDER ACCURATE COMPACT FINITE DIFFERENCE SCHEME

By substituting the Hopf–Cole transformation

u(x, t)=−2�
�x
�

(4)

into the Burgers equation (1), we can obtain the linearized equation

�t =��xx (5)

One can see that the Hopf–Cole transformation (4) is a solution to (1) for any function �
satisfying (5). Therefore, the initial and boundary value problem of Burgers’ equation can be
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A COMPACT FDM FOR SOLVING BURGERS’ EQUATION 749

reduced to the following linearized equation with the initial and homogeneous Neumann boundary
conditions:

�t = ��xx , a<x<b, 0<t�T

�(x,0) = �(x)=exp

(
− 1

2�

∫ x

a
f (s)ds

)
, a<x<b

�x (a, t) = �x (b, t)=0, 0<t�T

(6)

The solution domain �={(x, t) |a�x�b,0�t�T } is discretized into grids described by the set
{(xi , tk)} of nodes, in which xi =a+ih, i=0,1, . . . , J, and tk =k�,k=0,1, . . . ,N =T/�, where h
and � are mesh sizes for space and time variables, respectively.

Let vki =v(xi , tk). We use the following notations for simplicity:

v
k+1/2
i := 1

2
(vk+1

i +vki ), �tvk+1
i := 1

�
(vk+1

i −vki )

Dxv
k
i := 1

h
(vki+1−vki ), Dx̂v

k
i := 1

2h
(vki+1−vki−1)

�2xv
k
i := 1

h
(Dxv

k
i −Dxv

k
i−1)=

1

h2
(vki+1−2vki +vki−1)

By setting w=��xx , the Equation (5) can be written as w=�t . Assume that the solution � is
sufficiently smooth. By the Taylor expansion, we get

w
k+1/2
i =�t�k+1

i +O(�2) (7)

and

w
k+1/2
i = �(�xx )

k+1/2
i =��2x�

k+1/2
i −�

h2

12
(�xxxx )

k+1/2
i +O(h4)

= ��2x�
k+1/2
i − h2

12
(wxx )

k+1/2
i +O(h4)

= ��2x�
k+1/2
i − h2

12
�2xw

k+1/2
i +O(h4) (8)

Substituting (7) into (8), we obtain

1
12 (�t�

k+1
i−1 +10�t�k+1

i +�t�k+1
i+1 )−��2x�

k+1/2
i =O(�2+h4) (9)

Let �k
i denote the approximation of �ki . From (9) we obtain the following compact finite

difference scheme to solve problem (6):

1
12 (�t�

k+1
i−1 +10�t�k+1

i +�t�k+1
i+1 )−��2x�

k+1/2
i = 0, 0�i�J

D x̂ �k+1
0 = D x̂ �k+1

J =0

�0
i = �(xi )

(10)
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By the approximation of boundary conditions in (10), this scheme can be written as

1
12 (�t�

k+1
i−1 +10�t�k+1

i +�t�k+1
i+1 )−��2x�

k+1/2
i =0, 1�i�J−1

5�t�k+1
0 +�t�k+1

1 − 12�

h
Dx�

k+1/2
0 =0

�t�k+1
J−1+5�t�k+1

J + 12�

h
Dx�

k+1/2
J−1 =0, 0�k�N−1

�0
i =�(xi )

The above scheme can be rewritten as the following matrix equation:

(A+�r B)Hk+1=(A−�r B)Hk, k=0,1, . . . ,N−1 (11)

where Hk =(�k
0,�

k
1, . . . ,�

k
J )

T, r =�/h2, and

A=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 0 · · · 0

1 10 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 10 1

0 · · · 0 1 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −6 0 · · · 0

−6 12 −6
. . .

...

0
. . .

. . .
. . . 0

...
. . . −6 12 −6

0 . . . 0 −6 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since the matrix A+�r B is symmetric tridiagonal and strictly diagonally dominant, Equation (11)
has a unique solution and can be easily solved. From (9) we know that this scheme has a truncation
error of order O(�2+h4) for i=1, . . . , J−1.

Integrating (4) with respect to variable x on the interval [xi−1, xi+1] for i=1, . . . , J−1, we
have ∫ xi+1

xi−1

u(x, tk)dx=−2�
∫ xi+1

xi−1

�x (x, tk)

�(x, tk)
dx=−2� ln

∣∣∣∣�(xi+1, tk)

�(xi−1, tk)

∣∣∣∣
By applying Simpson’s rule for the integration in the above equation, we obtain

uki−1+4uki +uki+1=−6�

h
ln

∣∣∣∣∣�ki+1

�ki−1

∣∣∣∣∣+O(h4)

Let Uk
i denote the approximation of uki . Then we get the linear algebraic system

Uk
i−1+4Uk

i +Uk
i+1=Fk

i , 1�i�J−1 (12)

where

Fk
i =−6�

h
ln

∣∣∣∣∣�k
i+1

�k
i−1

∣∣∣∣∣
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Since Uk
0 =Uk

J =0, the Equation (12) can be written as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 0 · · · 0

1 4 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 4 1

0 . . . 0 1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uk
1

Uk
2

...

...

Uk
J−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fk
1

Fk
2

...

...

Fk
J−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The coefficient matrix in the above equation is tridiagonal symmetric positive definite, and the
above linear system is well-conditioned, since the eigenvalues of the matrix are �i =4+2cos(i�/J )

for i=1,2, . . . , J−1 and, hence, the spectral condition number is less than 3, where the spectral
condition number is defined as the ratio of the largest and smallest eigenvalues. This linear matrix
equation can be easily solved by using direct or iterative methods.

3. STABILITY AND CONVERGENCE ANALYSES

In this section we investigate the stability and convergence rate of the present scheme by the
energy method. Let Ih ={x0, . . . , xJ } denote the set of nodes of the interval I =[a,b]. For any grid
functions f and g defined on Ih , we define the following discrete L2-inner products:

〈 f, g〉= h

2
( f0g0+ f J gJ )+

J−1∑
i=1

fi gi h (13)

〈 f, g〉l =
J−1∑
i=0

fi gi h (14)

and the respective associated norms are defined by

‖ f ‖L2 =√〈 f, f 〉, |‖ f |‖L2 =√〈 f, f 〉l (15)

We also use the following discrete norms in this section:

‖ f ‖L∞ = max
0�i�J

| fi |, ‖ f ‖2H1 =‖ f ‖2L2
+|‖Dx f |‖2L2

(16)

The following lemmas can be proved without difficulty.

Lemma 1
For any grid functions f and g defined on Ĩh ={x−1, x0, . . . , xJ+1}, we have

〈�2x f,g〉=−〈Dx f,Dxg〉l −(D x̂ f0)g0+(D x̂ f J )gJ (17)

Lemma 2
For any grid function f defined on Ih , we have the inequality

|‖Dx f |‖2L2
� 4

h2
‖ f ‖2L2

(18)
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Lemma 3
For any grid function f defined on Ih , we have the inequality

‖ f ‖L∞�M0‖ f ‖H1 (19)

where M0=max{1/√b−a,
√
b−a}.

Theorem 4
Let �n

i be the solution of scheme (10). Then we have

‖�n‖2L2
� 3

2‖�0‖2L2
, 1�n�N (20)

Proof
By taking the inner product 〈·, ·〉 on both sides of the first equation in (10) with �k+1+�k , we have

〈�t�k+1,�k+1+�k〉−2�〈�2x�k+1/2,�k+1/2〉+ h2

12
〈�t [�2x�]k+1,�k+1+�k〉=0 (21)

Using Lemma 1 and the boundary approximations D x̂�k
0=D x̂�k

J =0, we obtain

‖�k+1‖2L2
−‖�k‖2L2

+2��|‖Dx�
k+1/2|‖2L2

− h2

12
{|‖Dx�

k+1|‖2L2
−|‖Dx�

k |‖2L2
}=0

By summing from k=0 to n−1 we have

‖�n‖2L2
−‖�0‖2L2

+2��
n−1∑
k=0

|‖Dx�
k+1/2|‖2L2

− h2

12
{|‖Dx�

n|‖2L2
−|‖Dx�

0|‖2L2
}=0

Then we get

‖�n‖2L2
− h2

12
|‖Dx�

n|‖2L2
� ‖�0‖2L2

− h2

12
|‖Dx�

0|‖2L2

�max

{
‖�0‖2L2

,
h2

12
|‖Dx�

0|‖2L2

}
The proof is completed by applying Lemma 2 to the above inequality. �

Remark 5
By taking the inner product 〈·, ·〉 on both sides of the first equation in (10) with �k+1−�k , using
Lemma 1 and the boundary approximations Dx̂�k

0=Dx̂�k
J =0, we can obtain

�‖�t�k+1‖2L2
− h2�

12
|‖Dx [�t�k+1]|‖2L2

+ �

2
{|‖Dx�

k+1|‖2L2
−|‖Dx�

k |‖2L2
}=0

It follows from Lemma 2 that

|‖Dx�
k+1|‖2L2

�|‖Dx�
k |‖2L2

Combining this inequality with (20) and using Lemma 3, we obtain the discrete ‖·‖L∞-norm
stability

‖�n‖2L∞�M2
0‖�n‖2H1�

3M2
0

2
‖�0‖2H1, 1�n�N (22)
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Let eki =�k
i −�ki , i=−1,0, . . . , J+1, where �k

i and �ki are the solutions of (10) and (6),
respectively. We then obtain the following error equations:

1
12 (�t e

k+1
i−1 +10�t ek+1

i +�t ek+1
i+1 )−��2xe

k+1/2
i = Rk

i , 0�i�J (23)

Dx̂e
k
0 = Rk

l , Dx̂e
k
J = Rk

r , e0i =0 (24)

where Rk
i , R

k
l , and Rk

r denote the truncation errors.

Theorem 6
Assume that the solution of problem (6) is sufficiently smooth. Then there exists a constant M>0
such that

max
1�n�N

‖en‖2L2
�M max

0�k�n
{‖Rk‖2L2

+|Rk
l |2+|Rk

r |2}+ Mh4 max
1�k�n

{|�t Rk
l |2+|�t Rk

r |2} (25)

Proof
By taking the inner product 〈·, ·〉 on both sides of (23) with ek+1+ek , we obtain

〈�t ek+1,ek+1+ek〉−2�〈�2xek+1/2,ek+1/2〉+ h2

12
〈�t [�2xe]k+1,ek+1+ek〉=〈Rk,ek+1+ek〉 (26)

Using Lemma 1 and the boundary errors in (24), we have

{‖ek+1‖2L2
−‖ek‖2L2

}+2��|‖Dxe
k+1/2|‖2L2

− h2

12
{|‖Dxe

k+1|‖2L2
−|‖Dxe

k |‖2L2
}

=2�〈Rk,ek+1/2〉+2��{Rk+1/2
r ek+1/2

J −Rk+1/2
l ek+1/2

0 }

+ �h2

6
{[�t Rk+1

l ]ek+1/2
0 −[�t Rk+1

r ]ek+1/2
J }

��{‖Rk‖2L2
+‖ek+1/2‖2L2

}+2��{|Rk+1/2
l ‖ek+1/2

0 |+|Rk+1/2
r ‖ek+1/2

J |}

+ �h2

6
{|�t Rk+1

l ‖ek+1/2
0 |+|�t Rk+1

r ‖ek+1/2
J |}

It follows from Lemma 3 that

|ek+1/2
0 |�M0{‖ek+1/2‖L2 +|‖Dxe

k+1/2|‖L2}

|ek+1/2
J |�M0{‖ek+1/2‖L2 +|‖Dxe

k+1/2|‖L2}
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With the ε-Cauchy inequality (ab�(1/4ε)a2+εb2) we obtain

{‖ek+1‖2L2
−‖ek‖2L2

}+2��|‖Dxe
k+1/2|‖2L2

− h2

12
{|‖Dxe

k+1|‖2L2
−|‖Dxe

k |‖2L2
}

��M1{‖Rk‖2L2
+|Rk+1/2

l |2+|Rk+1/2
r |2+h4|�t Rk+1

l |2+h4|�t Rk+1
r |2}

+�M1‖ek+1/2‖2L2
+2��|‖Dxe

k+1/2|‖2L2

where

M1=max

{
1,

(
1+2M0�+ M0

6

)
, (M0+2M2

0 )�,
M0

12
+ M2

0

72�

}

By summing from k=0 to n−1 and noting e0=0, we obtain(
1− M1�

2

)
‖en‖2L2

− h2

12
|‖Dxe

n|‖2L2
��M1

n−1∑
k=1

‖ek‖2L2
+n�M1 max

1�k�n
‖Rk‖2L2

+n�M1 max
1�k�n

{|Rk
l |2+|Rk

r |2+h4|�t Rk
l |2+h4|�t Rk

r |2}

Taking � sufficiently small, noting that n��T , and applying Lemma 2 and the discrete Gronwall
inequality to the above inequality, the result follows immediately. �

Remark 7
By using a similar argument as above and using the discrete Gronwall inequality, we can obtain
the following discrete ‖·‖L∞-norm error estimate:

max
1�n�N

‖en‖2L∞ � M max
1�k�n

{‖Rk‖2L2
+|Rk

l |2+|Rk
r |2+|�t Rk

l |2+|�t Rk
r |2}

+Mh4 max
1�k�n−1

{|�2t Rk
l |2+|�2t Rk

r |2} (27)

where �2t R
k
l =(Rk+1

l −2Rk
l +Rk−1

l )/�2.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical examples to test the accuracy of the proposed method
and compare the method with some other available numerical methods. The accuracy of the present
method will be measured by the discrete L2- and L∞-error norms defined in (15) and (16).

4.1. Examples with homogeneous boundary conditions

To demonstrate efficiency and accuracy of the present method, we consider three test examples
in this subsection, taken from [6, 8]. Numerical solutions obtained by the present method are
compared with the exact solutions and the results given in [6, 8], and [15–18].

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:747–764
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Example 1
We first consider the Burgers Equation (1) with the initial condition

u(x,0)=sin(�x), 0<x<1

and homogeneous Dirichlet boundary conditions

u(0, t)=u(1, t)=0, 0�t�T

By applying Hopf–Cole transformation, we obtain the initial condition to problem (6) given as

�(x,0)=exp(−(2��)−1(1−cos(�x))), 0<x<1

The exact Fourier solution of Burgers’ equation is given by

u(x, t)=2��

∑∞
n=1 an exp(−n2�2�t)n sin(n�x)

a0+∑∞
n=1 an exp(−n2�2�t)cos(n�x)

(28)

where the Fourier coefficients are

a0=
∫ 1

0
exp(−(2��)−1(1−cos(�x)))dx

an =2
∫ 1

0
exp(−(2��)−1(1−cos(�x)))cos(n�x)dx for n=1,2, . . .

In Tables I and II, numerical solutions obtained by the present method at different nodes and
times are displayed and compared with the exact and numerical solutions given by other available
methods. It can be seen that the accuracy of our method is similar to the fourth-order iterative
finite difference method [8]. Errors generated by using different mesh sizes are given in Table III,
which shows that the accuracy of the present method is fourth order.

In Figure 1 we draw both numerical (solid line) and exact (dash-dot line) solution curves
generated by using different values of �=1, 0.1 and 0.01, and this figure shows good agreements

Table I. Comparison of numerical and exact solutions of Example 1 at t=0.1 for �=1 with h=0.1.

Numerical

�=0.00001 �=0.0001

x Exact-explicit [6] GM [16] IFD [8] Present Exact

0.1 0.11048 0.10958 0.10954 0.10954 0.10954
0.2 0.21159 0.20989 0.20980 0.20980 0.20979
0.3 0.29435 0.29199 0.29190 0.29190 0.29190
0.4 0.35080 0.34709 0.34794 0.34793 0.34792
0.5 0.37458 0.37173 0.37159 0.37157 0.37158
0.6 0.36189 0.35920 0.35906 0.35903 0.35905
0.7 0.31231 0.31003 0.30992 0.30989 0.30991
0.8 0.22955 0.22792 0.22783 0.22780 0.22782
0.9 0.12160 0.12071 0.12069 0.12068 0.12069
‖e‖L2 3.923e−6
‖e‖L∞ 5.638e−6
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Table II. Comparison of numerical and exact solutions of Example 1 for
�=0.1 with h=0.025 and �=0.001.

Numerical

x t Exact-explicit [6] FEM [15] IFD [8] Present Exact

0.25 0.4 0.30891 0.31429 0.30889 0.30889 0.30889
0.6 0.24075 0.24373 0.24074 0.24074 0.24074
0.8 0.19568 0.19758 0.19568 0.19568 0.19568
1.0 0.16257 0.16391 0.16256 0.16256 0.16256
3.0 0.02720 0.02743 0.02720 0.02720 0.02720

0.50 0.4 0.56964 0.57636 0.56963 0.56963 0.56963
0.6 0.44721 0.45169 0.44721 0.44721 0.44721
0.8 0.35924 0.36245 0.35924 0.35924 0.35924
1.0 0.29192 0.29437 0.29192 0.29192 0.29192
3.0 0.04021 0.04057 0.04021 0.04020 0.04021

0.75 0.4 0.62542 0.62592 0.62544 0.62544 0.62544
0.6 0.48721 0.49034 0.48722 0.48721 0.48721
0.8 0.37392 0.37713 0.37392 0.37392 0.37392
1.0 0.28748 0.29016 0.28748 0.28747 0.28747
3.0 0.02977 0.01334 0.02977 0.02977 0.02977

Table III. Errors and convergence rate of Example 1 for �=0.1 at t=0.5 with different mesh sizes.

h=0.1 �=0.05

Mesh size �,h �
4 , h

2
�
16 , h

4
�
64 , h

8
�

256 , h
16

‖e‖L2 3.520e−4 1.983e−5 1.212e−6 7.538e−8 4.705e−9
Rate 4.1498 4.0319 4.0074 4.0018
‖e‖L∞ 6.103e−4 3.614e−5 2.271e−6 1.414e−7 8.839e−9
Rate 4.0777 3.9922 4.0058 3.9996

of those curves. For �=0.001, the infinite Fourier solution fails to converge. Numerical solution
curves for this small value of � at different times are given in the bottom right of Figure 1, and
the curves show the correct physical behavior.

Example 2
We consider the Burgers Equation (1) with the initial condition

u(x,0)=sin(2�x), 0<x<1

and boundary conditions

u(0, t)=u(1, t)=0, 0�t�T

The initial condition to problem (6) is

�(x,0)=exp(−(4��)−1(1−cos(2�x)))
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Figure 1. Numerical and exact solutions of Example 1 for different values of � with mesh sizes:
h=0.05, �=0.0001 (�=1); h=0.025, �=0.001 (�=0.1); h=0.01, �=0.001 (�=0.01); and

h=0.001, �=0.001 (�=0.001).

and the exact Fourier solution to Burgers’ equation is given by (28). However, in this case, the
Fourier coefficients are

a0=
∫ 1

0
exp(−(4��)−1(1−cos(2�x)))dx

an =2
∫ 1

0
exp(−(4��)−1(1−cos(2�x)))cos(n�x)dx for n=1,2, . . .

This example is usually used for simulating the shock formation. The numerical and exact
solution curves and distributions of absolute errors for �=0.005 are drawn in Figure 2. The curves
are not distinguishable due to the closeness of the numerical and exact solutions. One can see from
Figure 2 that the maximal absolute errors occur around the critical points. Because the magnitude
of differentiations around the critical points is larger than others, the magnitude of truncation
errors around these points is larger. Figure 3 shows the numerical solution curves (left) at different
times for �=0.001 and the numerical solution curves (right) at t=1.4 for different values of �.
The Fourier solution fails to converge for �=0.001. However, the numerical solution curves show
the correct physical behavior. We give convergence rate of the present method for Example 2 in
Table IV, which shows the fourth-order convergence rate.
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Figure 2. Exact and numerical solutions of Example 2 (left), and distribution of absolute errors (right)
for �=0.005 with h=0.01 and �=0.01.
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Figure 3. Numerical solutions of Example 2 for �=0.001 (left) and numerical solutions at t=1.4 for
different values of � (right).

Table IV. Errors and convergence rate of Example 2 for �=0.1 at t=0.1 with different mesh sizes.

h=0.1 �=0.01

Mesh size �,h �
4 , h

2
�
16 , h

4
�
64 , h

8
�

256 , h
16

�
1024 , h

32

‖e‖L2 0.0024 1.285e−4 7.673e−6 4.743e−7 2.956e−8 1.846e−9
Rate 4.2229 4.0661 4.0160 4.0040 4.0010
‖e‖L∞ 0.0051 2.573e−4 1.656e−5 1.018e−6 6.350e−8 3.967e−9
Rate 4.3089 3.9576 4.0236 4.0033 4.0005

Example 3
We consider the shock-like solution of the Burgers equation. The analytic solution is given by
(cf. [12, 17])

u(x, t)= x/t

1+√
t/t0 exp(x2/4�t)

, t�1 (29)
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where t0=exp(1/8�). The initial condition is taken from (29) by setting t=1 and boundary
conditions u(a, t)=u(b, t)=0 are used. By the Hopf–Cole transformation, the initial condition to
problem (6) is given by

�(x,1)=exp

{
log

(
1+√

1/t0 exp(x2/4�)

1+√
1/t0

)
− x2

4�

}
, a<x<b

The numerical (solid line) and exact (dash-dot line) solution curves, and distributions of absolute
errors for �=0.005 and 0.001 are shown in Figures 4 and 5, respectively. The numerical and
exact solutions of Example 3 at different times and nodes, and errors are displayed in Table V.
To compare accuracy, the errors of the present and some existing methods are given in Table VI,
which shows that the present method gives higher accuracy.
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Figure 4. Exact and numerical solutions of Example 3 (left), and distribution of absolute errors (right)
for �=0.005 with h=0.02 and �=0.02.
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Table V. Numerical and exact solutions of Example 3, and errors for �=0.001 with
h=0.005, �=0.01, and [a,b]=[0,1.2].

t

1.7 2.4 3.1

x Numerical Exact Numerical Exact Numerical Exact

0.2 0.1176 0.1176 0.0833 0.0833 0.0645 0.0645
0.4 0.2350 0.2353 0.1666 0.1667 0.1290 0.1290
0.6 0.3507 0.3529 0.2495 0.2500 0.1934 0.1935
0.8 0.0000 0.0000 0.0038 0.0033 0.2573 0.2581
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
‖e‖L2 0.0018 0.0012 0.00077
‖e‖L∞ 0.0143 0.0089 0.0054

Table VI. Comparison of errors for Example 3 with �=0.005, h=0.005, �=0.01, and [a,b]=[0,1].
t

1.7 2.5 3.25

Present method ‖e‖L2 ×103 0.02018 0.01662 0.96628
‖e‖L∞ ×103 0.06364 0.09421 6.89958

QRK [18] ‖e‖L2 ×103 0.02681 0.03135 1.11149
‖e‖L∞ ×103 0.09174 0.11515 8.00069

QBC [17] ‖e‖L2 ×103 0.07215 0.05103 1.24901
‖e‖L∞ ×103 0.31153 0.18902 8.98390

CBC [17] ‖e‖L2 ×103 2.46642 2.11187 1.92482
‖e‖L∞ ×103 27.5770 25.1517 21.0489

4.2. Examples with nonhomogeneous boundary conditions

In this subsection, we consider two examples with nonhomogeneous boundary conditions u(a, t)=
ul(t) and u(b, t)=ur (t). In this case, the linearized problem obtained by the Hopf–Cole transfor-
mation is as follows:

�t = ��xx , a<x<b, 0<t�T

ul(t)�(a, t)+2��x (a, t) = ur (t)�(b, t)+2��x (b, t)=0

�(x,0) = �(x)

(30)

Then the finite difference scheme for the problem (30) is given by

1
12 (�t�

k+1
i−1 +10�t�k+1

i +�t�k+1
i+1 )−��2x�

k+1/2
i =0, 1�i�J−1

5�t�k+1
0 +�t�k+1

1 − 12�

h
Dx�

k+1/2
0 + h

2�
�t [ul�0]k+1− 6

h
[ul�0]k+1/2=0
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�t�k+1
J−1+5�t�k+1

J + 12�

h
Dx�

k+1/2
J−1 − h

2�
�t [ur�J ]k+1+ 6

h
[ur�J ]k+1/2=0

�0
i =�(xi )

In this case, Fk
1 and Fk

J−1 in (12) should be replaced with Fk
1 −ukl and Fk

J−1−ukr , respectively.

Example 4
We consider the solution of (1) given by (cf. [8, 19, 20])

u(x, t)= 	+
+(
−	)exp(�)

1+exp(�)
, t>0

where �=	(x−
t−�)/�, and 	, �, and 
 are constants. The initial condition is obtained from the
exact solution by setting t=0, and the boundary conditions u(0, t)=1 and u(1, t)=0.2 are used.
The initial condition to the problem (30) is given by

�(x,0)=exp((	−
)(x−a)/(2�))
1+exp(	(�−x)/�)

1+exp(	(�−a)/�)
, t>1

This solution represents a travelling wave, initially situated at x=�, moving to the right with
speed 
. The smaller value of � gives the steeper wave. We simulate the movement of the solution
by taking parameters 	=0.4, 
=0.6, and �=0.125. The numerical (solid line) and exact (dash-dot
line) solution curves, and distributions of absolute errors for �=0.01, 0.005, and 0.001 are drawn
in Figures 6, 7, and 8, respectively. These figures show that the agreement between the numerical
and exact solutions is satisfactory.

Example 5
As the last example, we consider the one-shock-wave solution of Burgers’ equation (1) given by

u(x, t)= �

2

{
1+ tanh

[
�

8�
(−2x+�t)

]}
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Figure 6. Exact and numerical solutions of Example 4 (left), and distribution of absolute errors (right)
for �=0.01 with h=0.005 and �=0.005.
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Figure 7. Exact and numerical solutions of Example 4 (left), and distribution of absolute errors (right)
for �=0.005 with h=0.0025 and �=0.0025.
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Figure 8. Exact and numerical solutions of Example 4 (left), and distribution of absolute errors (right)
for �=0.001 with h=0.001 and �=0.0005.

which is the well-known Taylor shock profile [21]. The initial condition to the problem (30) is
given by

�(x,0)=exp(	(x−a))
cosh(	x)

cosh(	a)

where 	=−�/(4�). The numerical experiments are carried out with �=1.6. The boundary condi-
tions u(−5, t)=1.6 and u(10, t)=0 are used. The numerical (solid line) and exact (dash-dot line)
solution curves for �=0.5 and 0.1 are drawn in Figures 9 and 10, respectively. In these figures,
the maximal absolute errors occur at the left boundary and these errors are raised by the finite
difference approximations of the nonhomogeneous boundary conditions. One can see that the
numerical and exact solutions are in good agreement.
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Figure 9. Exact and numerical solutions of Example 5 (left), and distribution of absolute errors (right)
for �=0.5 with h=0.05 and �=0.01.
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Figure 10. Exact and numerical solutions of Example 5 (left), and distribution of absolute errors (right)
for �=0.1 with h=0.025 and �=0.01.

5. CONCLUSION

A compact finite difference method for one-dimensional Burgers’ equation is introduced and
analyzed. This method is shown to be unconditionally stable and second- and fourth-order accurate
in time and space, respectively. The present method gives a symmetric positive-definite tridiag-
onal implicit linear system, which can be easily implemented. Our numerical experiments show
that the present method offers high accuracy, and they also support the analysis of convergence
rate.
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